UNIVERSITY^{OF} BIRMINGHAM

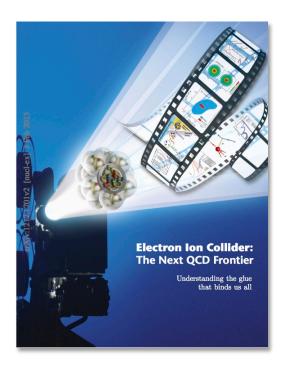
Precision Central Silicon Tracking & Vertexing for the EIC

Peter Jones, Laura Gonella, Paul Newman, Phil Allport

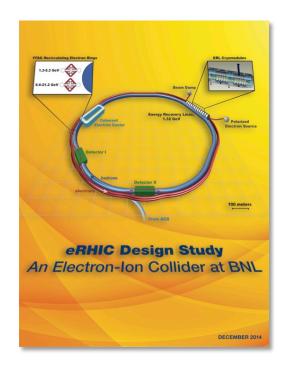
University of Birmingham

Proposal

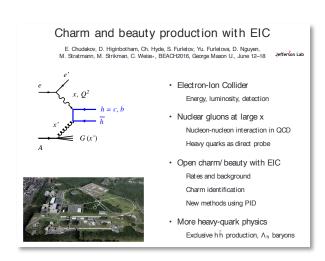
To develop a detailed concept for a central silicon vertex detector for a future EIC experiment, exploring the potential advantages of HV/HR-CMOS MAPS technologies.


WP1: Sensor Development (Gonella, Allport)

WP2: Silicon Detector Layout Investigations (Jones, Newman)


WP3: Physics Performance Evaluation (Newman, Jones)

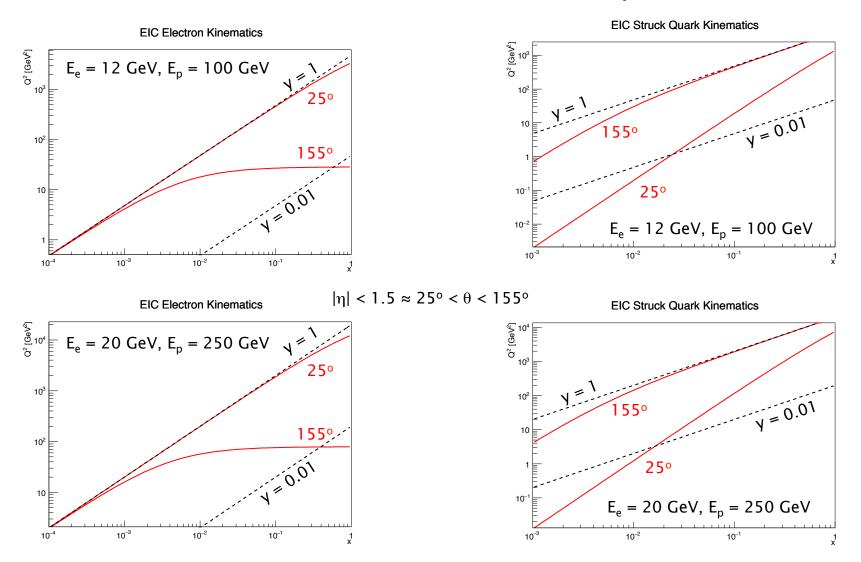
Science case


· Improved vertexing capability; emphasis on heavy flavour EIC promises unprecedented precision in charm (beauty) measurements

A. Accardi et al., arXiv:1212.1701

E.C. Aschenauer et al., arXiv:1409.1633

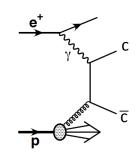
C. Weiss et al., JLab LDRD 1601 Nuclear gluons with charm at the EIC


· Improved momentum and angular resolution

May be particularly important for scattered electrons in high Q² events

Motivation

Scattered electron kinematics


Struck quark kinematics

Charm observables

· Importance of charm observables in the updated EIC White Paper

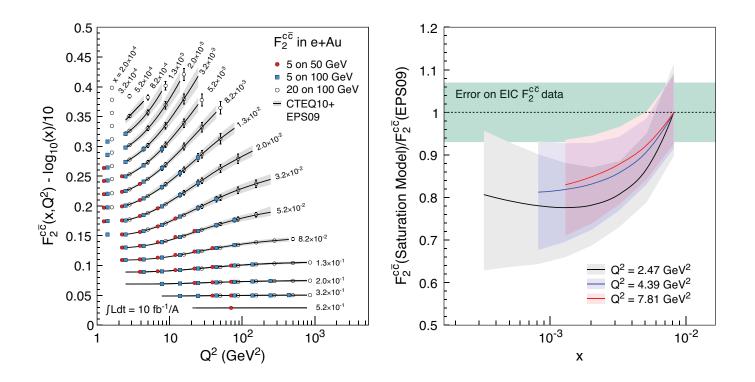
Leading order charm production process is γg fusion Provides sensitivity to:

The gluon contribution to spin of the nucleon

Charm production sensitive to Δg in polarised e+p scattering; complementary to QCD scaling violations observed in inclusive DIS

II. Physics of high gluon densities and low-x in nuclei

The charm structure function F_2^{charm} provides a complementary method for determining the nuclear gluon density in e+A


May be particularly sensitive to the onset of gluon saturation

III. Hadronisation and energy loss

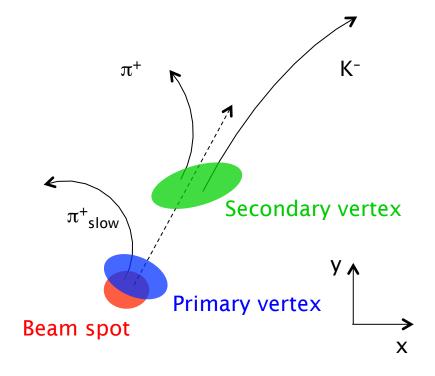
Study the nuclear modification of hadronisation and energy loss in cold nuclear matter as a function of quark mass

Expected physics performance

Physics of high gluon densities and low-x physics in nuclei

Left: Expected precision in F₂^{charm} versus Q² in e+Au collisions Right: Potential to distinguish between saturation and shadowing

· Aim to refine/update these plots with the studies proposed in WP3

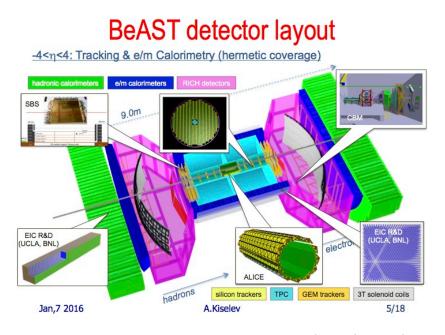

Open charm reconstruction

· Signature is a displaced (secondary) decay vertex

Particle	Decay	b.f.	сτ
D^0	$\text{K}^-\pi^+$	(3.9%)	123 μm
D ⁺	$\text{K}^-\pi^+\pi^+$	(9.5%)	311 μm
D*+	$\text{D}^0\pi_{\text{slow}}^{\text{+}}$	(67.7%)	

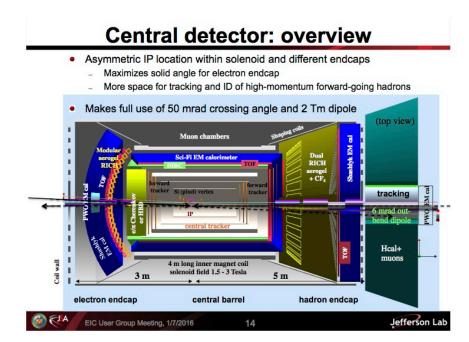
Example:

$$\mathsf{D}^{*_{+}} \to \mathsf{D}^{0}\pi_{\mathsf{slow}}^{+} \to \left(\mathsf{K}^{-}\pi^{+}\right)\pi_{\mathsf{slow}}^{+}$$



Is it possible to reconstruct the secondary vertex?

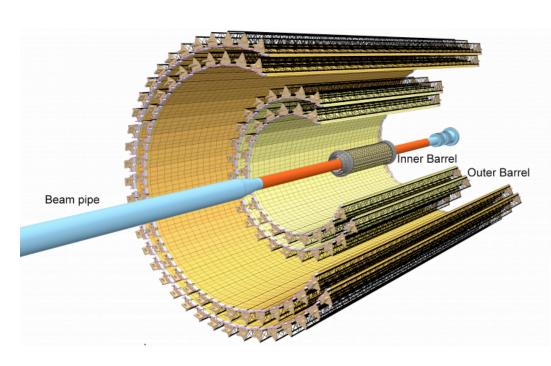
Requires excellent impact parameter resolution in transverse plane


EIC Detector Concepts

BeAST and Jlab EIC full acceptance detector

Alexander Kiselev

Based on ALICE ITS upgrade 2×2 barrel layers $20 \times 20 \mu m^2$ pixel pitch $0.3\% X_0$ per layer


Pawel Nadel-Turonski

Several technology options, e.g. Belle II new DEPFET-based pixel SVD

Propose to optimise vertex detector layout for HF as part of WP2

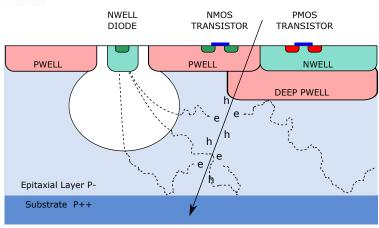
ALICE ITS Upgrade

· A "prototype" EIC vertex detector?

Radiation tolerance

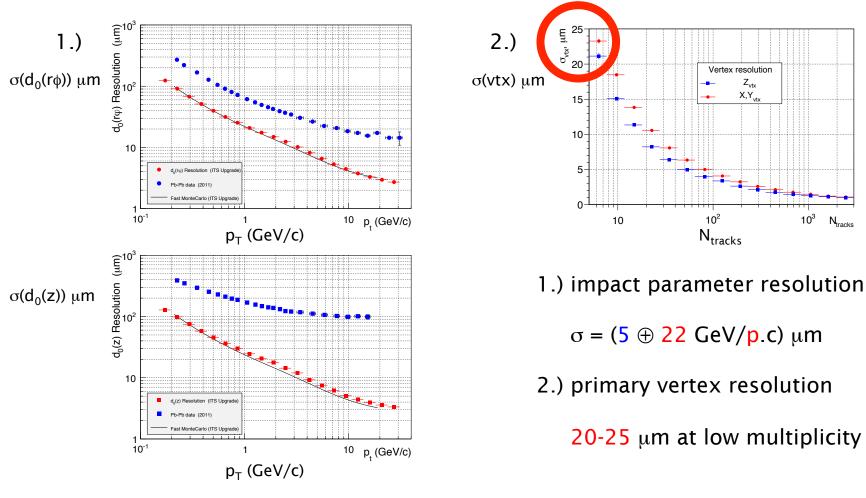
TID: 2.7 Mrad

NIEL: $1.7 \times 10^{13} 1 \text{ MeV n}_{eq} \text{ cm}^{-2}$


Meets or exceeds requirements of EIC

ALPIDE sensor
0.18 µm CMOS Tower Jazz
28 x 28 µm² pixel pitch
<2 µs time resolution

Power density < 50 mW cm⁻² 50 kHz interaction rate (Pb-Pb)


200 kHz interaction rate (pp)

Inner layer thickness = $0.3\% X_0$ Outer layer thickness = $0.8\% X_0$

ALICE ITS performance

· Impact parameter and primary vertex resolution

Technical Design Report of the Upgrade of the ALICE ITS, J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002)

· Illustrates performance and provides benchmark for this study

- Detector requirements
 - 1) high granularity and 2) minimal thickness

Sensor makes "modest" contribution to detector thickness

 $(50 \mu \text{m silicon} \approx 0.05\% X_0)$

Hybrid-IC Cold Plate Space Frame 0.144% X₀ 0.100% X₀ 0.018% X₀ (55% / Sensor 20%) (38%)

(7%)

· R&D strategy

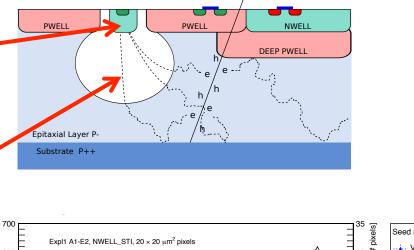
Focus on optimal pixel geometry and power requirements

Maximise Q/C: high signal-to-noise and low power

Aim of this proposal

Exploit charge collection by drift rather than diffusion

Explore configuration of collection electrode and pixel size

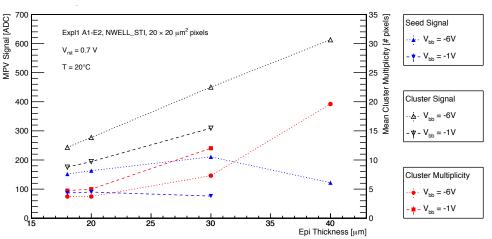

ALICE experience

Small collection electrode with separated electronics in deep p-well → small detector capacitance

Possibility to apply a moderate V_{bias} → charge collection by drift in depleted volume

Thicker epitaxial layers yield larger Q, but the cluster size is larger due to diffusion.

Larger depletion volume desirable to maximize seed signal while keeping low cluster multiplicity.



NMOS

TRANSISTOR

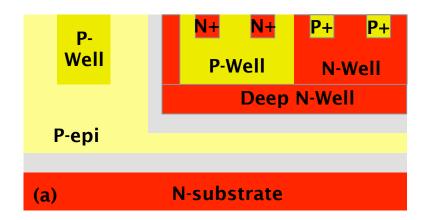
NWELL

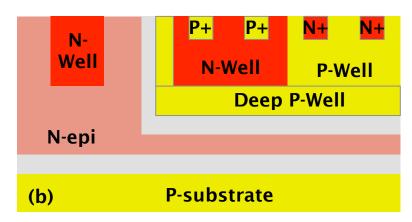
DIODE

J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002

· Sensor development in this proposal

New development with Rutherford Appleton Laboratory and TowerJazz.

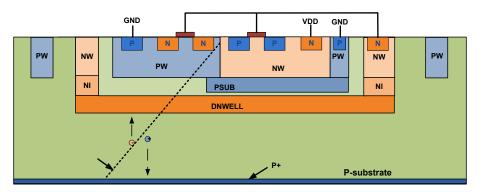

Add junction on back side of sensor


- 1) larger depletion volume,
- 2) small collection electrode and
- 3) potentially very low capacitance.

Two options: invert a) substrate or b) epitaxial layer

Option b) proposed by us to exploit the benefit of using an n-type collection electrode:

- Lower diffusion for a given V_{bias}
- Faster charger collection, less charge spread at the electrode
- (Improved radiation hardness)


Birmingham-RAL-Sussex Candidate EIC sensor

Possibility to explore options with LFoundry technology

150 nm CMOS quadruple well process

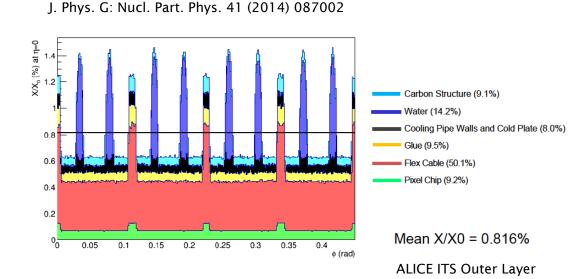
Access to chip design and MLM run via RD50 collaboration

Possibility to design large electrodes with isolated electronics

N. Wermes, AIDA2020 1st annual meeting, Hamburg, June 2016

larger electrode = larger drift volume → larger signal

Being explored for HL-LHC for its radiation hardness


Larger capacitance means higher noise and higher power

Still possible to achieve high signal-to-noise? Can novel powering schemes mitigate power increase?

Timeline: Call for interest sent out to RD50 institutes; first meeting to discuss layouts at end of summer; submission expected next year.

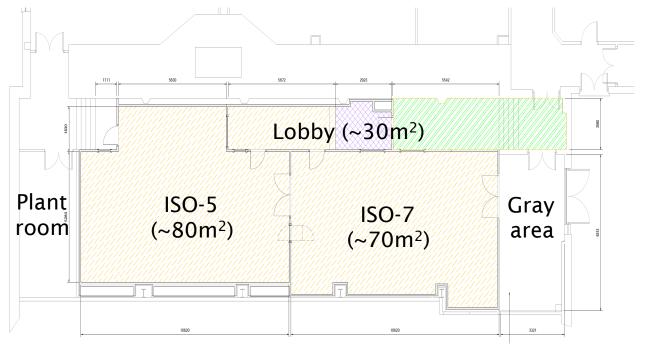
Material budget considerations

Cables to bring in power and cooling to extract it dominate the material budget of trackers in HEP

Counter-measures: low power FE + power distribution at low current and high voltage (DC-DC conversion, serial power)

Serial power distribution could be considered to lower cable material in active area, following the baseline design for the ATLAS and CMS pixel detectors at the HL-LHC

See: Laura Gonella, Developments for serial power appilcations, ACES Workshop https://indico.cern.ch/event/468486/contributions/1144360/attachments/1239152/1822525/20160308-ACES.pdf


WP1 Facilities

- · Track record: ATLAS SCT (current) and ITK strips (phase 2 upgrade)
- New Instrumentation Laboratory

Investment in new ~200 m² laboratory; available from July 2016

New academic appointments: Phil Allport, Laura Gonella, Steve Worm

Expanding manufacturing capability and growing new R&D in MAPS

Birmingham Instrumentation Laboratory for Particle physics and its Applications

WP1 Facilities

Instrumentation Laboratory

Equipment:

Hesse & Knipps BondJet 820 automatic wire bonder Delvotec 5430 semiautomatic table top wire bonder Dage 4000 wire-pull and shear strength tester Dima Dotmaster with the DD-5097 upgrade Cascade Microtech REL 4800 manual probe station Cammax Precima DB600 die bonder pick and placer 2 x Keithley 2410

Plus inspection microscopes, electrical test equipment, N2 storage, environmental chamber, precision scales, ...

We are also purchasing:

Cascade Summit12000B semi-automatic probe station

TCT Laser system

X-ray flourescence tube and targets

Keithley 2410

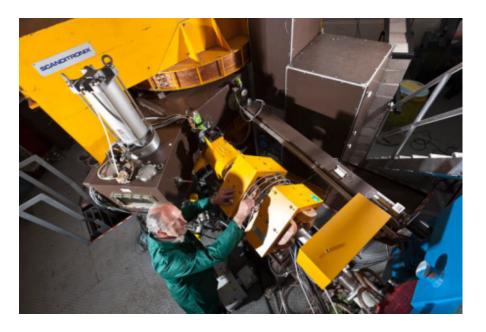
Keithley 6517B

4285A Precision LCR Meter

WP1 Facilities

· Birmingham MC40 Cyclotron

Primarily used for medical radioisotope production


An irradiation facility for particle physics was commissioned in 2013

27 MeV protons (max 40 MeV), 1 cm² beam spot with 1 μ A beam current

Scanning and low temperature irradiation capability

Delivers HL-LHC doses within a single day of operation

MAPS prototype structures with TowerJazz foundry

UK STFC-funded R&D project; Birmingham-RAL-Sussex collaboration

Start date: 1st June 2016; 2 years development programme

```
Development towards a Reconfigurable Monolithic Active Pixel Sensor in Radiation-hard
Technology for Outer Tracking and Digital Electromagnetic Calorimetry
```

```
P.P. Allport<sup>1</sup>, D. Das<sup>2</sup>, L. Gonella<sup>1*</sup>, S.J. Head<sup>1</sup>, K. Nikolopoulos<sup>1</sup>, S. McMahon<sup>2</sup>, P.R. Newman<sup>1</sup>,

P. Phillips<sup>2</sup>, F. Salvatore<sup>3</sup>, R. Turchetta<sup>2</sup>, G. Villani<sup>2</sup>, N.K. Watson<sup>1</sup>, F. Wilson<sup>2</sup>, Z. Zhang<sup>2</sup>

1) The University of Birmingham

2) Rutherford Appleton Laboratory, STFC
```

3) The University of Sussex

TCAD simulations are starting and preliminary specifications for active pixels are being defined

Possibility to have test structures with different pixel sizes, collection electrode geometry and implant

Expect prototypes on timescale of ~ 1 year

WP2 and WP3 summary

· WP2 - Silicon Detector Layout Investigations

Optimise vertex detector layout for heavy flavour studies

Explore sensitivity to spatial resolution and detector thickness

Characterise performance with single tracks and open charm decays

Aim to optimise # layers and radial distances wrt outer tracking

· WP3 - Physics Performance Evaluation

End-to-end simulations of HF processes with realistic detector model

Initial focus on F_2^{charm} and F_2^{beauty} in e+A

Opportunities for collaboration
 Synergy with JLab LDRD 1601 (C. Weiss et al.)
 eRD16 - MAPS for forward and backward tracking
 eRD6 - Tracking and PID consortium

Scope and deliverables

Scope and deliverables

Two year R&D project

Proposed deliverables in the first year:

- WP1: Specification and submission of test structures in Tower Jazz
- WP1: Specification and submission of test structures in LFoundry
- WP1: TCAD simulations to optimise pixel geometry and aspect ratio
- WP1: Initial characterisation of Tower Jazz sensor properties
- WP2: Study of track momentum resolution and impact parameter resolution with different assumptions on spatial resolution of pixel hits and number of tracking layers
- WP3: Apply e+p or e+A Monte Carlo models for heavy flavour processes in EIC simulations to begin studies of open charm and beauty production

Resources summary

Jones (0.1 FTE), Gonella (0.2 FTE), Newman (0.1 FTE) and Allport (0.05 FTE)

Test structures from Tower Jazz foundry run

PhD student (from October 2017)

Computing resources

Access to MC40 cyclotron for early irradiation studies

Requested

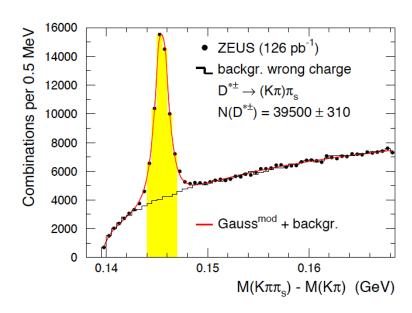
One full-time postdoc, approximately £103k, including overheads

Travel to and from UK partners (RAL) £1k

Travel to and from the US to attend EIC meetings £6k

Licenses for TCAD £1k

Contribution to 2016 RD50 L-Foundry run £4k

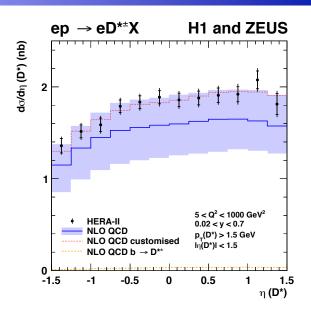

Total: £115k (approx. \$150k)

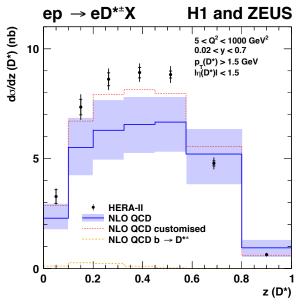
Backup slides

Track record

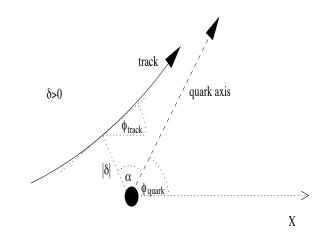
- Prof Peter Jones Head of the Birmingham Nuclear Physics research group. Background in relativistic heavy ion collisions. Past member of the STAR collaboration (Strangeness Working Group Convenor 1996-2001).
 Member of the ALICE collaboration (Editorial Board member since 2015).
- Dr Laura Gonella Lecturer in silicon detector technologies. Particular expertise in CMOS pixel sensors. Joined the University of Birmingham in 2015 from the University of Bonn. Currently co-leads the ATLAS ITK Strip Tracker Upgrade ASICs group.
- Prof Paul Newman Head of the Birmingham Particle Physics research group. Background in deep inelastic scattering. Member of the H1 collaboration (Physics Coordinator 2001-4) and the LHeC Study Group (Coordination Group and Low-x Working Group Convenor).
- Prof Phil Allport Joined the University of Birmingham in 2014. Director of the Birmingham Instrumentation Laboratory for Particle Physics and its Applications. ATLAS Upgrade Coordinator 2011-15. Leads the Birmingham RD50 group and AIDA-2020 Transnational Access contact for the MC40 cyclotron.

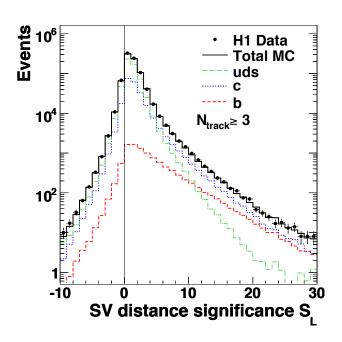
Experience from HERA

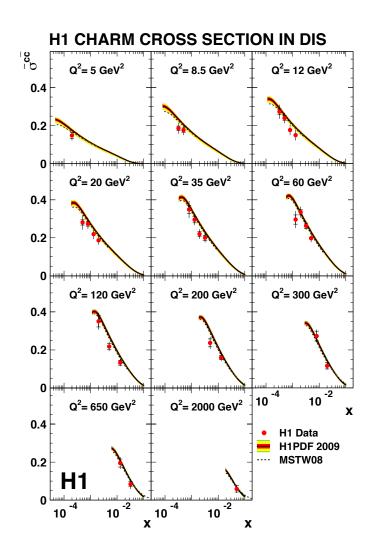


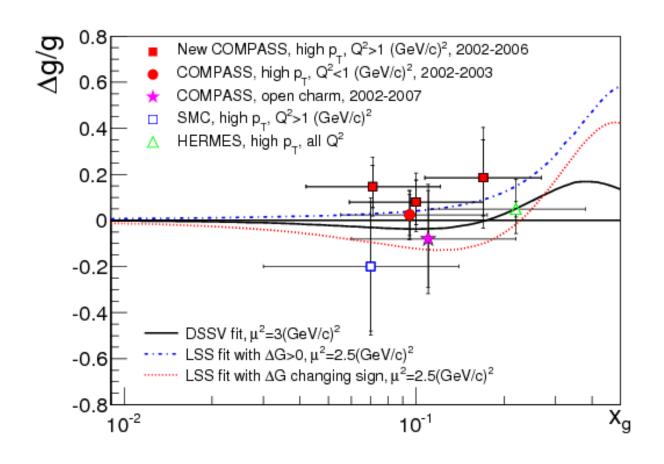

 $D^* \rightarrow D^0 \pi_s \rightarrow K\pi \pi_s$ by far the most productive charm channel at HERA

"Slow" pion, π_s has low pT ~ 100 MeV \rightarrow vital To maintain charged particle efficiency to low pT


Width of D* peak highly dependent on charged track resolution → strong motivation to optimise now


Physics not perfectly understood even for ep → Rich programme at EIC ...




HF Results from H1

Gluon polarisation results

